Entries in Depression (2)

Monday
Jun292015

Can the Bacteria in Your Gut Explain Your Mood?

The Dolder Grand
Health & Rejuvenation

PD Dr. Rainer Arendt
Internal Medicine & Cardiology FMH
Prevention & Regenerative Medicine


We offer gut microbiome exchange (transplantation) as novel opportunity in prevention and treatment of various and so far difficult to treat ailments (auto-immune diseases, metabolic disorders, neuro-psychiatric diseases and addictions, cardiovascular disease, endocrine disorders and infertility, cancer).

 

It is the rich array of microbiota in our intestines that makes us the human beings we are and preserves our health.

 

Since 2007, when scientists announced plans for a Human Microbiome Project to catalog the micro-organisms living in our body, the profound appreciation for the influence of such organisms has grown rapidly with each passing year. Bacteria in the gut produce vitamins and break down our food; their presence or absence has been linked to obesity, inflammatory bowel disease and the toxic side effects of prescription drugs. Biologists now believe that much of what makes us human depends on microbial activity. The two million unique bacterial genes found in each human microbiome can make the 23,000 genes in our cells seem paltry, almost negligible, by comparison. ‘‘It has enormous implications for the sense of self,’’ Tom Insel, the director of the National Institute of Mental Health, told me. ‘‘We are, at least from the standpoint of DNA, more microbial than human. That’s a phenomenal insight and one that we have to take seriously when we think about human development.’’

Given the extent to which bacteria are now understood to influence human physiology, it is hardly surprising that scientists have turned their attention to how bacteria might affect the brain. Micro-organisms in our gut secrete a profound number of chemicals, and researchers have found that among those chemicals are the same substances used by our neurons to communicate and regulate mood, like dopamine, serotonin and gamma-aminobutyric acid (GABA). These, in turn, appear to play a function in intestinal disorders, which coincide with high levels of major depression and anxiety. Last year, for example, a group in Norway examined feces from 55 people and found certain bacteria were more likely to be associated with depressive patients.

Anxiety, depression and several pediatric disorders, including autism and hyperactivity, have been linked with gastrointestinal abnormalities. Microbial transplants can be performed safely, it is not invasive brain surgery, and that is the point: Changing a patient’s bacteria can be done, altering his genes is still far away.

When Mark Lyte from the Texas Tech University Health Sciences Center campus in Abilene, Tex., as one of the first, began his work on the link between microbes and the brain three decades ago, it was dismissed as a curiosity. By contrast, last September, the National Institute of Mental Health awarded four grants worth up to $1 million each to spur new research on the gut microbiome’s role in mental disorders, affirming the legitimacy of a field that had long struggled to attract serious scientific credibility. Lyte and one of his longtime colleagues, Christopher Coe, at the Harlow primate lab, received one of the four. ‘‘What Mark proposed going back almost 25 years now has come to fruition,’’ Coe told me. ‘‘Now what we’re struggling to do is to figure out the logic of it.’’ It seems plausible that we might use microbes to diagnose neurodevelopmental disorders, treat mental illnesses and perhaps even fix them in the brain.

In 2011, a team of researchers at University College Cork, in Ireland, and McMaster University, in Ontario, published a study in Proceedings of the National Academy of Science that has become one of the best-known experiments linking bacteria in the gut to the brain. Laboratory mice were dropped into tall, cylindrical columns of water in what is known as a forced-swim test, which measures over six minutes how long the mice swim before they realize that they can neither touch the bottom nor climb out, and instead collapse into a forlorn float. Researchers use the amount of time a mouse floats as a way to measure what they call ‘‘behavioral despair.’’ (Antidepressant drugs, like Zoloft and Prozac, were initially tested using this forced-swim test.)

For several weeks, the team, led by John Cryan, the neuroscientist who designed the study, fed a small group of healthy rodents a broth infused with Lactobacillus rhamnosus, a common bacterium that is found in humans and also used to ferment milk into probiotic yogurt. Lactobacilli are one of the dominant organisms babies ingest as they pass through the birth canal. Recent studies have shown that mice stressed during pregnancy pass on lowered levels of the bacterium to their pups. This type of bacteria is known to release immense quantities of GABA; as an inhibitory neurotransmitter, GABA calms nervous activity, which explains why the most common anti-anxiety drugs, like Valium and Xanax, work by targeting GABA receptors.

Cryan found that the mice that had been fed the bacteria-laden broth kept swimming longer and spent less time in a state of immobilized woe. ‘‘They behaved as if they were on Prozac,’’ he said. ‘‘They were more chilled out and more relaxed.’’ The results suggested that the bacteria were somehow altering the neural chemistry of mice.

Until he joined his colleagues at Cork 10 years ago, Cryan thought about microbiology in terms of pathology: the neurological damage created by diseases like syphilis or H.I.V. ‘‘There are certain fields that just don’t seem to interact well,’’ he said. ‘‘Microbiology and neuroscience, as whole disciplines, don’t tend to have had much interaction, largely because the brain is somewhat protected.’’ He was referring to the fact that the brain is anatomically isolated, guarded by a blood-brain barrier that allows nutrients in but keeps out pathogens and inflammation, the immune system’s typical response to germs. Cryan’s study added to the growing evidence that signals from beneficial bacteria nonetheless find a way through the barrier. Somehow — though his 2011 paper could not pinpoint exactly how — micro-organisms in the gut tickle a sensory nerve ending in the fingerlike protrusion lining the intestine and carry that electrical impulse up the vagus nerve and into the deep-brain structures thought to be responsible for elemental emotions like anxiety. Soon after that, Cryan and a co-author, Ted Dinan, published a theory paper in Biological Psychiatry calling these potentially mind-altering microbes ‘‘psychobiotics.’’

It has long been known that much of our supply of neurochemicals — an estimated 50 percent of the dopamine, for example, and a vast majority of the serotonin — originate in the intestine, where these chemical signals regulate appetite, feelings of fullness and digestion. But only in recent years has mainstream psychiatric research given serious consideration to the role microbes might play in creating those chemicals. Lyte’s own interest in the question dates back to his time as a postdoctoral fellow at the University of Pittsburgh in 1985, when he found himself immersed in an emerging field with an unwieldy name: psychoneuroimmunology, or PNI, for short. The central theory, quite controversial at the time, suggested that stress worsened disease by suppressing our immune system.

By 1990, at a lab in Mankato, Minn., Lyte distilled the theory into three words, which he wrote on a chalkboard in his office: Stress->Immune->Disease. In the course of several experiments, he homed in on a paradox. When he dropped an intruder mouse in the cage of an animal that lived alone, the intruder ramped up its immune system — a boost, he suspected, intended to fight off germ-ridden bites or scratches. Surprisingly, though, this did not stop infections. It instead had the opposite effect: Stressed animals got sick. Lyte walked up to the board and scratched a line through the word ‘‘Immune.’’ Stress, he suspected, directly affected the bacterial bugs that caused infections.

To test how micro-organisms reacted to stress, he filled petri plates with a bovine-serum-based medium and laced the dishes with a strain of bacterium. In some, he dropped norepinephrine, a neurochemical that mammals produce when stressed. The next day, he snapped a Polaroid. The results were visible and obvious: The control plates were nearly barren, but those with the norepinephrine bloomed with bacteria that filigreed in frostlike patterns. Bacteria clearly responded to stress.

Then, to see if bacteria could induce stress, Lyte fed white mice a liquid solution of Campylobacter jejuni, a bacterium that can cause food poisoning in humans but generally doesn’t prompt an immune response in mice. To the trained eye, his treated mice were as healthy as the controls. But when he ran them through a plexiglass maze raised several feet above the lab floor, the bacteria-fed mice were less likely to venture out on the high, unprotected ledges of the maze. In human terms, they seemed anxious. Without the bacteria, they walked the narrow, elevated planks.

Each of these results was fascinating, but Lyte had a difficult time finding microbiology journals that would publish either. ‘‘It was so anathema to them,’’ he told me. When the mouse study finally appeared in the journal Physiology & Behavior in 1998, it garnered little attention. And yet as Stephen Collins, a gastroenterologist at McMaster University, told me, those first papers contained the seeds of an entire new field of research. ‘‘Mark showed, quite clearly, in elegant studies that are not often cited, that introducing a pathological bacterium into the gut will cause a change in behavior.’’

Lyte went on to show how stressful conditions for newborn cattle worsened deadly E. coli infections. In another experiment, he fed mice lean ground hamburger that appeared to improve memory and learning — a conceptual proof that by changing diet, he could change gut microbes and change behavior. After accumulating nearly a decade’s worth of evidence, in July 2008, he flew to Washington to present his research. He was a finalist for the National Institutes of Health’s Pioneer Award, a $2.5 million grant for so-called blue-sky biomedical research. Finally, it seemed, his time had come. When he got up to speak, Lyte described a dialogue between the bacterial organ and our central nervous system. At the two-minute mark, a prominent scientist in the audience did a spit take.

‘‘Dr. Lyte,’’ he later asked at a question-and-answer session, ‘‘if what you’re saying is right, then why is it when we give antibiotics to patients to kill bacteria, they are not running around crazy on the wards?’’

Can antibiotics given prior to surgery increase chances of depression after surgery? I know a person who suffered severe depression after...

Lyte knew it was a dismissive question. And when he lost out on the grant, it confirmed to him that the scientific community was still unwilling to imagine that any part of our neural circuitry could be influenced by single-celled organisms. Lyte published his theory in Medical Hypotheses, a low-ranking journal that served as a forum for unconventional ideas. The response, predictably, was underwhelming. ‘‘I had people call me crazy,’’ he said.

But by 2011 — when he published a second theory paper in Bioessays, proposing that probiotic bacteria could be tailored to treat specific psychological diseases — the scientific community had become much more receptive to the idea. A Canadian team, led by Stephen Collins, had demonstrated that antibiotics could be linked to less cautious behavior in mice, and only a few months before Lyte, Sven Pettersson, a microbiologist at the Karolinska Institute in Stockholm, published a landmark paper in Proceedings of the National Academy of Science that showed that mice raised without microbes spent far more time running around outside than healthy mice in a control group; without the microbes, the mice showed less apparent anxiety and were more daring. In Ireland, Cryan published his forced-swim-test study on psychobiotics. There was now a groundswell of new research. In short order, an implausible idea had become a hypothesis in need of serious validation.

Late last year, Sarkis Mazmanian, a microbiologist at the California Institute of Technology, gave a presentation at the Society for Neuroscience, ‘‘Gut Microbes and the Brain: Paradigm Shift in Neuroscience.’’ Someone had inadvertently dropped a question mark from the end, so the speculation appeared to be a definitive statement of fact. But if anyone has a chance of delivering on that promise, it’s Mazmanian, whose research has moved beyond the basic neurochemicals to focus on a broader class of molecules called metabolites: small, equally druglike chemicals that are produced by micro-organisms. Using high-powered computational tools, he also hopes to move beyond the suggestive correlations that have typified psychobiotic research to date, and instead make decisive discoveries about the mechanisms by which microbes affect brain function.

Two years ago, Mazmanian published a study in the journal Cell with Elaine Hsiao, then a graduate student in the lab of Paul Patterson, another author of the study, and now a neuroscientist at Caltech, that made a provocative link between a single molecule and behavior. Their research found that mice exhibiting abnormal communication and repetitive behaviors, like obsessively burying marbles, were mollified when they were given one of two strains of the bacterium Bacteroides fragilis.

The study added to a working hypothesis in the field that microbes don’t just affect the permeability of the barrier around the brain but also influence the intestinal lining, which normally prevents certain bacteria from leaking out and others from getting in. When the intestinal barrier was compromised in his model, normally ‘‘beneficial’’ bacteria and the toxins they produce seeped into the bloodstream and raised the possibility they could slip past the blood-brain barrier. As one of his colleagues, Michael Fischbach, a microbiologist at the University of California, San Francisco, said: ‘‘The scientific community has a way of remaining skeptical until every last arrow has been drawn, until the entire picture is colored in. Other scientists drew the pencil outlines, and Sarkis is filling in a lot of the color.’’

Mazmanian knew the results offered only a provisional explanation for why restrictive diets and antibacterial treatments seemed to help some children with autism: Altering the microbial composition might be changing the permeability of the intestine. ‘‘The larger concept is, and this is pure speculation: Is a disease like autism really a disease of the brain or maybe a disease of the gut or some other aspect of physiology?’’ Mazmanian said. For any disease in which such a link could be proved, he saw a future in drugs derived from these small molecules found inside microbes. In his view, the prescriptive solutions probably involve more than increasing our exposure to environmental microbes in soil, dogs or even fermented foods; he believed there were wholesale failures in the way we shared our microbes and inoculated children with these bacteria. So far, though, the only conclusion he could draw was that disorders once thought to be conditions of the brain might be symptoms of microbial disruptions, and it was the careful defining of these disruptions that promised to be helpful in the coming decades.

The list of potential treatments incubating in labs around the world is startling. Several international groups have found that psychobiotics had subtle yet perceptible effects in healthy volunteers in a battery of brain-scanning and psychological tests. Another team in Arizona recently finished an open trial on fecal transplants in children with autism. (Simultaneously, at least two offshore clinics, in Australia and England, began offering fecal microbiota treatments to treat neurological disorders, like multiple sclerosis.) Mazmanian: ‘‘We’ve reached the stage where there’s a lot of, you know, ‘The microbiome is the cure for everything,’ ’’ he said. ‘‘I have a vested interest if it does. But I’d be shocked if it did.’’

 

Excerpted from Peter Andrey Smith, a reporter living in Brooklyn. He frequently writes about the microbial world.

Reporting for his New York Times' article was supported by the UC Berkeley-11th Hour Food and Farming Journalism Fellowship.

PD Dr. med. Rainer Arendt
FMH Cardiology, Internal Medicine
Regenerative Medicine 

SWISS  PREVENTION  CLINIC
Klausstrasse 10
CH-8008 ZURICH
T +41 43 336 7260
M +41 78 825 0803
F +41 43 336 7261

rainer.arendt@swisspreventionclinic.ch

www.swisspreventionclinic.ch
www.patientcircle.org

Monday
Nov112013

Gut Bacteria Transplant: A New Treatment For Obesity And Depression

The Dolder Grand

Health Care &
Rejuvenation

 

PD Dr. Rainer Arendt
Internal Medicine & Cardiology FMH
Prevention & Regeneratice Medicine 

 

 

 

 

 

 

 

Based on Psychology Today, Dale Archer Sep. 2013

 

Recent scientific studies indicate that gut bacteria may play a pivotal role in brain chemistry and mental health. More specifically, the right type of “healthy bacteria” in your gut may treat/prevent depression, anxiety and obesity.

In research circles the gut is often referred to as the "second brain". There are over 100 million neurons in the gut (more than the spinal cord or peripheral nervous system) and many contain the exact same neurotransmitters as the brain.

 

We know that the gut and mood are related—think butterflies in your stomach when anxious or a knot in your stomach when stressed out. This link is via the vagus nerve, a direct neuronal connection between the gut and the brain. In fact vagus nerve stimulation via an implanted electrode treats depression.

What’s new and exciting now are studies that indicate that bacteria in the gut are doing far more than simply digesting food and maintaining a healthy immune system.

Here is some background on recent findings related to gut bacteria:
Don't be put off by the term "bacteria" like it's a bad thing. Actually, there are over 100 trillion microorganisms living in the gut—vastly more than the number of cells in your whole body. These bugs weigh about five pounds, the same as your brain and perform a multitude of functions, much like other organs in the body.

 

 

Transplantation of good, healthy bacteria from one person’s gut to another is quick via endoscopy, colonoscopy or enema. This is essentially a “stool transplant”, but is more accurately known as fecal microbiota transplantation (FMT). FMT is currently used to treat life threatening infections, has a 90% cure rate and is being studied as a possible treatment for inflammatory bowel disease . Could weight loss  be next?

A fascinating study looked at identical human twins, where one was thin and the other obese. Their gut microbiota was transferred into specially bred mice who did not have their own gut bacteria. Remarkably, the mice who received bacteria from thin subjects stayed thin, while the recipients from the obese twins became fat.

As for the psychiatric possibilities, there was a recent study of calm vs. anxious mice. Fecal microbiota transplanted from an anxious strain of mice made a calm mouse very anxious. Not only that, but transplant of the gut content from the calm strain helped to relax and increase the confidence of the anxious strain . In this case, their behavior wasn't dependent on genetics or brain chemistry but rather the bacterial composition of their gut!

In humans, UCLA looked at 36 women without psychiatric symptoms. Twelve women ate fermented yogurt with probiotics (so called “good bacteria”), 11 ate a non-fermented milk product and 13 received no intervention whatsoever. By measuring brain activity via functional MRI, they found the women who ate the fermented yogurt registered brain function changes in areas associated with emotion and sensation when exposed to pictures showing angry or frightened faces.

This is the first human study to show an interaction between probiotics and the brain. Larger and more complex studies are in the works, but the National Institute of Mental Health has called for grant submissions to further investigate this potentially game changing concept.

Humans are, by cell count, approximately 90% bacteria. As microbial research continues, we're finding these little bugs play a much bigger role in our life than we could ever imagine. Our mental and physical health may well not just be encoded in our DNA but dictated by our bacterial makeup as well.

The next treatment for depression, anxiety or obesity will focus on the bacterial composition of our gut as opposed to brain chemistry or behavior.